Von der Fahrerassistenz zum autonomen Fahren – Herausforderungen an die Skalierbarkeit und die Verfügbarkeit

Funktionale Sicherheit und Security in der Fahrzeugelektronik

07. Februar 2017
Thorsten Rosenthal
Senior Systems Engineer Advanced Engineering Body and Security
Delphi Electronics & Safety
Delphi Portfolio

Electrical/Electronic Architecture
- Electrical/Electronic Distribution Systems
- Connection Systems

Electronics & Safety
- Electronic Controls
- Infotainment and Driver Interface Systems
- Services

Powertrain Systems
- Gasoline Engine Management Systems
- Diesel Engine Management Systems

Product & Service Solutions
- Diesel
- Independent Aftermarket
- Original Equipment Service

ottomatika
CONTROLTEC
HellermannTyton
QUANERGY
DELPHI
Increasing Automated Driving levels drive progression from fail-safe behavior to fail-operational
Technology Content of Future Automated Vehicles

- Sensors and Perception
- Computing Platforms and Control Systems
- Electrical Architecture and Network Management
- Vehicle Connectivity and Cloud Services
- User Experience (e.g. HMI)
- Functional Safety and Security
Scalable Architecture Requirements

Low Variant

Mid Variant

High Variant

NCAP base vehicles
changing NCAP requirements

Level 2 vehicles
flexible to changes in NCAP and market demand

Level 3+ vehicles
premium content to differentiate

Flexible, scalable architectures needed to address the full range of market requirements and provide “future proof” capabilities for feature growth
Scalability for ADAS Functionality

Features

- Advanced emergency braking (NCAP)
- Lane support systems (up to SAE Level 2)
- Blind spot detection (NCAP)
- Adaptive cruise control (SAE Level 2)
- Junction assist (NCAP)
- Traffic jam assist (up to Level 3)
- Lane change support (up to Level 3)
- Surround view (Comfort)
Platform Supporting the Path to Highly Automated Driving – 2017 Market Introduction

Computing platform for Audi:
zFAS (zentrales Fahrerassistenzsystem)

+ Flexible and scalable software and hardware platform
+ Time triggered framework
+ Centralized fusion of sensors

Network of strong automotive partners

zFAS central computing approach sets a new industry platform standard for ADAS architectures
Next Step: Automated Driving (AD)

From fail silent to fail degraded

- Reuse of the existing system
 - *Avoid recertification and driving test of the base system.*

- Simplified architecture
 - *An „aircraft on the road“ can not be the solution.*

- The fallback solution is no longer the driver, in a level 4 system the car is the backup
 - *System needs to be capable of switching over to a fail degraded state, e.g. with a fallback control unit.*

- The system need to manage critical situations as e.g. tunnel, low sun or missing lane markers, hand over to driver is not longer an option
 - *Increased number of sensors, e.g. 3 different sensors to the front to enable a 2 out of 3 decision.*

- Environment models needs to be enhanced
 - *Switch to higher amount of sensor data or even to raw data*
Add on for Automated Driving

Features

- Advanced emergency braking (NCAP)
- Lane support systems (up to SAE Level 2)
- Blind spot detection (NCAP)
- Adaptive cruise control (SAE Level 2)
- Junction assist (NCAP)
- Traffic jam assist (up to SAE Level 3)
- Lane change support (up to SAE Level 3)
- Surround view (Comfort)
- Highway pilot (SAE Level 4)
- Valet parking (SAE Level 4)
Overall Field of View (FoV)
Worst Case Scenario Example

Result

Necessary Field of View depending on the minimum risk maneuver defined by the OEM!
Key Takeaways

System
- Fail operation is covered on system level, not on ECU level!
- Remaining Field of View has to be sufficient for the required minimum risk maneuver

Hardware
- AD ECU has to support ASIL D
- ADAS ECU may be sufficient in ASIL B
- Required calculation power depending on sensor data rate

Software
- Software has to support the shift of functionality during run time
- Synchronization mechanisms are needed to enable a take over within the Fault Tolerant Time Interval
The future. Now.