Volkswagen goes Adaptive

Adaptive AUTOSAR as SW Framework
for the new electric vehicle platform

Dr. Marcel Wille, Ulrich Kleine
Volkswagen AG
1. Motivation – Why is there a need for change?
2. Introduction – Basic approach, assumptions & challenges
3. Central architectural concepts
4. Roadmap Adaptive AUTOSAR
5. Conclusion

Current way of thinking: Vehicle separated from customers’ daily digital experience

New way of thinking: Vehicle integrated in customer digital experience
Motivation

„Digital World“ stands for innovation and being up to date
→ The Vehicle becomes an integral part of this digital world

The smart vehicle consistently increases its performance via updates and upgrades after sales

A new approach is required to enable continuous innovation
Assumptions and Challenges

Key Parameters

- Power Train
- Chassis
- Body
- ADAS
- Infotainment
...

- Power Train
- Chassis
- Body
- ADAS
- Infotainment
- Auto. Driving
- Digitalization
...

Criteria

- Distributed Functional Architecture
 - not appropriate for update- and upgradability

E/E-Architecture

- Centralized Functional Architecture
 - Application Server with Basic System Services

Technische Entwicklung
Elektrik/Elektronik
Architectural Pattern for Automotive Networks

Central Gateway Architecture

- Vehicle functions are distributed
 - High scalability
 - Distributed functions are limited by the network capabilities

Domain Controller Architecture

- Integration of software into domain-specific ECUs
 - Increased flexibility
 - Cross domain functionalities over different Domain Controller (DC)
 - Limited scalability (DC always required)

Amount of software

Software complexity
A new approach to enable updatability & upgradability

Centralized functional architecture with decoupling of application software and I/O functions
- Reduce overall system complexity and dependencies between applications

Efficient & fast development of customer functions
- Provide basic services required by several customer functions
- Make use of service-oriented communication
Service-oriented architecture as key to digitalization

Enables Volkswagen to reduce complexity & improve updateability, upgradeability, reusability and portability by:

- dividing applications in single, self-contained software components
- minimizing functional dependencies between software components

Achieved by:
- Service-oriented communication
- dynamic binding using service discovery and publish/subscribe
- Data representation primarily based on REST (Representational State Transfer) → uniform interfaces, stateless, separation of concerns, ...
- Forward- and backward-compatibility of interfaces
Interface compatibility

To enable continuous updates and upgrades, the compatibility of interfaces is required.

Depending on the use cases this can be achieved with:

- SOME/IP including a TLV (Tag-Length-Value) extension
- ViWi (Volkswagen infotainment Webservice interface) based on JSON

Forward compatibility:
An receiver is able to ignore additional elements provided by an updated interface.

Backward compatibility:
An updated receiver is able to receive and process only a subset of the required elements provided by an interface.
Communication Server

Central architectural component to encapsulate signal-based communication from service-oriented communication

- (Bus)signals on sensor-actuator level and legacy partition
- Services interfaces for service-oriented communication (application/basic services)

ICAS

Legacy partition

Applications

Basic Services

Communication Server

Router (Signal/PDU)

Service-oriented communication

Communication Server

Signal-based communication
Common SW-Framework based on Adaptive AUTOSAR

- Customer functions/basic services can be developed independently of ICAS and operating system
- Common methodology and exchange formats
- Common update and communication protocols
Roadmap basic software for partitions with Adaptive AUTOSAR

- POSIX Operating System
 - Execution Management
 - Initiate / Terminate of function
 - Restart of functions
 - User Management
 - Communication/Middleware
 - Ethernet incl. SOME/IP
 - Memory Management
 - File system access
 - Safe Key/Value Storage
 - Diagnostics
 - Logging and Tracing (DLT)
 - Diagnostics protocols
 - Methodology & Templates
 - SWC Description
 - Manifest
 - Signal-oriented communication to service-oriented communication

- Safety & Platform Health Management
 - E2E Protection
 - Watch dog

- SW-Updates & SW-Configuration Management
 - Partitioning concept
 - Interface for partition switch in Bootloader + SW reset
 - Installation routine

- Memory Management
 - Updates by SW-Configuration Management

- Security
 - Encryption
 - Authentication
 - Certificates
 - Crypto Hardware

- SW-Updates & SW-Configuration Management
 - Packet mechanisms
 - SW transfer onto ECU

- Execution Management
 - Updates by Security

- Architecture

- Methodology & Templates

- Diagnostics

- Execution Management
 - Resource Management
 - Updates by SW-Configuration

- Memory Management
 - Updates by SW-Configuration Management

Later Releases

- HW Acceleration (OpenCL)

- Vehicle API

- Further Language Bindings

- Redundancy mechanisms

- Startup Checks
Conclusion

Volkswagen is going to introduce a centralized architecture with focus on updataability and upgradability of customer functions.

In-Car Application Servers (ICAS) are using Adaptive AUTOSAR as SW-Framework.

Volkswagen & Vector will jointly promote the Adaptive AUTOSAR standard to be used in ICAS ECUs.
Thank you very much for your attention